
IREX IV
Evaluation of One-to-Many Iris Recognition

Concept, Evaluation Plan, and API Specification
Version 0.1

George W. Quinn and Patrick Grother

Image Group
Information Access Division

Information Technology Laboratory

April 15th, 2012

i

Status of this Document1

This is the first public version of this document. Comments and questions should be submitted to irex@nist.gov.2
The document can be downloaded from http://iris.nist.gov/irex.3

Timeline4

Table 1: Milestones and deadlines

April 16, 2012 NIST releases API version 0.1
May 1, 2012 Comments due on Initial API
May 15 - July 15, 2012 Anticipated submission window.

Release Notes5

NOTE: IREX IV is very similar to IREX III with respect to its API and implementation requirements. Notable
changes are highlighted throughout this document with a yellow background color.

6

IREX IV: Concept, Evaluation Plan, and API Specification

mailto:irex@nist.gov
http://iris.nist.gov/irexIV

CONTENTS ii

Contents7

1 IREX IV Concepts 18

1.1 Overview . 19

1.2 Market Drivers . 110

1.3 Application Scenarios . 211

2 Evaluation Overview 212

2.1 Performance Metrics . 313

2.2 Iris Datasets . 714

2.3 Test Environment . 715

2.4 Reporting of Results . 716

3 Software Submission 817

3.1 Participation Requirements . 818

3.2 Submission Procedure . 819

3.3 Requirements for Library Submissions . 920

3.4 Linking Requirements . 921

3.5 Single-thread Requirement . 1022

3.6 Installation Requirements . 1023

3.7 Runtime Behavior Requirements . 1124

4 API Specification 1225

4.1 Overview . 1226

4.2 Functions . 1327

4.2.1 Function Documentation . 1428

4.2.1.1 get_pid . 1429

4.2.1.2 get_max_template_sizes . 1430

4.2.1.3 initialize_enrollment_session . 1531

4.2.1.4 convert_multiiris_to_enrollment_template . 1532

4.2.1.5 finalize_enrollment . 1633

4.2.1.6 initialize_feature_extraction_session . 1734

4.2.1.7 convert_multiiris_to_identification_template . 1835

4.2.1.8 initialize_identification_session . 1836

4.2.1.9 identify_template . 1937

4.2.1.10 convert_raster_to_cropped_and_masked . 2038

5 Supporting Data Structures 2039

5.1 CANDIDATE Struct Reference . 2040

5.2 MULTIIRIS Struct Reference . 2141

5.3 MULTISEGMENTATION Struct Reference . 2242

5.4 ONEIRIS Struct Reference . 2243

5.5 ONESEGMENTATION Struct Reference . 2344

6 References 2545

IREX IV: Concept, Evaluation Plan, and API Specification

1 IREX IV Concepts 1

Terms and Definitions46

Table 2: The following terms and definitions are used in this document

ANSI American National Standards Institute
ANSI/NIST Type 17 American National Standard for Information Systems - Data Format for the In-

terchange of Fingerprint, Facial, and Other Biometric Information - Part 1
API Application Programming Interface
EDB Enrollment Database
FNIR False Negative Identification Rate
FPIR False Positive Identification Rate
FTS Failure to search
FTX Failure to extract features from an enrollment image
DET Detection Error Tradeoff
ISO International Standards Organization
ISO/IEC 19794-6 ISO/IEC standard titled "Information technology - Biometric data interchange

formats - Part 6: Iris image data"
ISO/IEC 29794-6 ISO/IEC standard titled "Biometric Sample Quality - Part 1: Framework"
IREX Iris Exchange
NIST National Institution of Standards and Technology
UID India’s Unique Identity scheme

1 IREX IV Concepts47

1.1 Overview48

This document establishes a concept of operations (CONOPS) and application programming interface (API) for the49
Iris Exchange (IREX) IV Evaluation. IREX IV will be a large-scale evaluation of iris recognition technology over50
operational data. Like IREX III [1], it will focus exclusively on one-to-many applications.51

The goals of this evaluation are52

• To investigate the use of cost parameters for application specific optimization (see Section 2.1.2).53

• To establish a compression profile for the efficient and compact storage of iris images (see Section 2.1.3).54

• To measure the speed and accuracy of iris matchers over the OPS-II dataset of operational iris images.55

This marks the fourth installment in the IREX program (see Figure 1). See http://iris.nist.gov/irex for all IREX related56
documentation.57

1.2 Market Drivers58

This evaluation is intended to support a plural marketplace of iris recognition systems. While the largest applica-59
tions, in terms of revenue, have been for border control and war zone identity management, India’s Unique Identity60
(UID) scheme is currently using iris (in conjunction with fingerprints) for de-duplication on a massive scale.61

The expanding marketplace for iris recognition has fueled the development of iris cameras designed to operate in62
a variety of applications. For example:63

• Some standoff-capture cameras can rapidly image and verify (in a one-to-many mode) high volumes of64
people.65

IREX IV: Concept, Evaluation Plan, and API Specification

http://iris.nist.gov/irex

1.3 Application Scenarios 2

Figure 1: Current extent of the IREX program as well as planned expansions.

• Some mobile cameras can be preloaded with firm-ware based segmentation and identification capability for66
rapid one-to-many watchlist searches.67

These applications are differentiated by population size, hardware capabilities, quality of the iris samples, and other68
variables.69

1.3 Application Scenarios70

The evaluation will focus on practical applications of iris recognition with an emphasis on large-scale deployments71
(i.e. where the enrollment database contains up to several million subjects). The interest is in one-to-many open-set72
identification systems. Systems operating in a one-to-many mode (sometimes referred to as "identification mode")73
are tasked with identifying the individual without a prior claim to identity. Open-set means there is no guarantee74
that the searched individual is enrolled in the database. To explore the potential for application-specific algorithm75
optimization, participants will submit two classes of implementations, each focusing greater attention on reducing76
a different type of error (see section 2.1.2). Table 3 details the parameters of this evaluation.77

Participants may also submit implementations that perform cropping and masking of the iris images to convert78
them into an ISO/IEC 19794-6 compact format. Representing iris images compactly is crucial for applications79
operating over limited-bandwidth networks. India’s Unique Identity (UID) scheme is seeking to reduce bandwidth80
requirements for the transmission of iris data.81

2 Evaluation Overview82

The evaluation will be conducted offline. Offline evaluations are attractive because they allow uniform, fair, re-83
peatable, and convenient testing. However, they do not capture all aspects of an operational system. While this84
evaluation is designed to mimic operational reality as much as possible, it does not include a live image acquisition85
component or any interaction with real users.86

IREX IV: Concept, Evaluation Plan, and API Specification

2.1 Performance Metrics 3

Table 3: Application Parameters

Parameter
Class P

(Positive Identification System)
Class N

(Negative Identification System)

Application Type One-to-many open-set identification systems
(e.g. watchlists, de-duplication operations).

Class Description
High cost associated with false

positives
High cost associated with false

negatives

Example Applications
Biometric authentication for

restricted access to high value
information, resources, or facilities.

Watchlists for high-profile
individuals. Investigational-mode

searches.

Enrolled Database Size Anywhere from O(102) to O(107) subjects.

Prior NIST References IREX III Final Report [1]
IREX III Supplement I: Failure Analysis [2]
Multiple Biometric Evaluation (MBE) 2010 [3]

Performance Criteria Primarily accuracy and speed.
Also, memory usage, scalability, template-size, etc.

2.1 Performance Metrics87

2.1.1 Accuracy88

Accuracy will be measured for open-set applications, which means that no assumption can be made as to whether89
the searched individual is enrolled in the database. Most real-world applications of biometrics operate in this way90
(e.g. watchlists and de-duplication tasks). Closed-set applications, which assume that every searched individual91
is enrolled in the database (and thus only concern themselves with which of those enrollees the searched person92
matches best) are operationally uncommon and will not be tested.93

Open-set biometrics systems are tasked with searching an individual against an enrollment database and returning94
zero or more candidates. Two types of decision errors are usually considered for this type of system. The first95
occurs when a candidate is returned for an individual that is not enrolled in the database. This is referred to as a96
false positive. The second occurs when the correct candidate is not returned for an individual that is enrolled in the97
database. This is referred to as a false negative.98

This evaluation will present core matching accuracy in the form of Detection Error Tradeoff (DET) [4] and Sensitivity-99
Reliability [5] plots, both of which show the tradeoff between the two types of error. The Application Programming100
Interface (API) will require searches to return a fixed number of candidates but will only consider a candidate101
viable if its dissimilarity score is below some decision threshold. Table 4 defines how the accuracy metrics will be102
computed.103

Table 4: DET and SEL-REL accuracy metrics

Performance Plot Metric Description

Detection-error
Tradeoff Curve

FPIR The fraction of non-mated searches for which at least one candidate has
a distance score at or below threshold.

FNIR The fraction of mated searches for which the correct candidate is not on
the list or has a distance score above threshold.

Selectivity-Reliability
Curve

SEL The average number of candidates for a non-mated search having a
distance score at or below threshold.

REL One minus FNIR

IREX IV: Concept, Evaluation Plan, and API Specification

2.1 Performance Metrics 4

In some plots, line segments will be drawn between curves to connect points of equal threshold. These line104
segments are intended to show how error rates at specific operating thresholds vary depending on factors such as105
the number of entries in the enrollment database or the quality of the iris samples.106

2.1.2 Cost Function Optimization107

This evaluation will investigate the use of cost parameters for application-specific algorithm optimization. The
goal is to determine if matching algorithms can be modified to improve performance when the costs of errors are
known in advance. The following cost model will be used as an evaluation metric for recognition performance:

E[Cost(τ)] = (1−PMated) FPIR(τ)CP +PMated FNIR(τ)CN (1)

where PMated is the a priori probability that the user is mated, CP is the cost of a false positive, CN is the cost
of a false negative, FPIR(τ) is the false positive identification rate, FNIR(τ) is the false negative identification
rate, and τ is the operating threshold. The model estimates the expected cost per user attempt, which could be
a measure of time, workload, money, etc. The participant is tasked with minimizing the cost for a predetermined
and fixed set of cost parameters (CP, CN , and PMated).

108

Cost parameters are often chosen to correspond to a specific application. Consider a biometric system that
provides bank vault access to specific individuals. One might reasonably set the cost of a false positive to be the
monetary value of whatever is in the vault, and the cost of a false negative to a value that reflects the amount of
inconvenience incurred from having to open the vault by some other method. Setting PMated to 0.1 assumes that
one out of every ten access attempts is by an allowed user.

109

NIST requires each participant to submit two implementations, each corresponding to a different set of cost
parameters. These parameters are defined in Table 5. Class P implementations penalize false positives heavily
and false negatives lightly. Class N implementations assign comparatively greater penalty to false negatives. For
this class of implementations, suppression of false positives is less important. Both classes will be tested over
one-eye and dual-eye tests. Participants may wish to use a different fusion rule for the two class types.

110

Table 5: Cost parameters for both submission types

Implementation Class CN CP Pmated
Class P 1 10 0.01
Class N 200 1 0.1

Additionally, failures to extract (FTXs) and failures to search (FTSs) will be treated differently depending on the
implementation class. For Class P implementations, both will be treated as failures in a positive recognition
system (e.g. access control). This is the way NIST has handled FTXs and FTSs in prior evaluations. For Class
N implementations, FTXs and FTSs be treated like failures in a negative recognition system (e.g. a watchlist).
Failures in a negative recognition system increase the FPIR when they occur for non-mated searches, but do not
increase the FNIR when they occur for mated searches. This differs from the way NIST has traditionally handled
these types of failure.

111

The motivation for requiring participants to submit two implementations is to see if it is possible to change the
shape of a DET to reduce cost for a specific set of cost parameters. Figure 2 plots standard DET curves for
two identification algorithms. The two curves cross one another, making it impossible to state which is more
accurate in any absolute sense. Since Class N implementations are penalized heavily for false negatives, and
only lightly for false positives, both algorithms are expected to achieve their lowest cost toward the right end of the
figure, where the blue curve performs better. Conversely, Class P implementations are penalized heavily for false
positives but only lightly for false negatives. Thus, for this set of cost parameters, both algorithms are expected to
achieve their lowest cost toward the left end of the figure, where the red curve performs better.

112

IREX IV: Concept, Evaluation Plan, and API Specification

2.1 Performance Metrics 5

Figure 2: Notional DET plots demonstrating how the two classes place greater emphasis on different

regions of the DET.

2.1.3 JPEG 2000 Compression113

India’s UID scheme will use the iris biometric for recognition tasks, and a desire has been expressed to represent
iris feature information more compactly to reduce bandwidth usage during network transfer. The ideal solution
is to store the images according to one of the compact and interoperable formats specified in ISO/IEC 19794-6.
This evaluation seeks to further support the standard by establishing JPEG 2000 compression profiles for the
efficient and compact storage of iris images. Toward this end, NIST will subject the images to lossy JPEG 2000
compression while tweaking various compression parameters. JPEG 2000 encoders that NIST may use include
OpenJPEG [6] and Kakadu [7]. Participants are requested to submit implementations that can convert a raw iris
image into an ISO/IEC 19794-6 Type 7 (cropped and masked) image (as shown in Figure 3). Support for this
operation is optional but encouraged.

114

Figure 3: An example of an ISO/IEC 19794-6 Type 7 (cropped and masked) image.

2.1.4 Single-eye and Dual-eye Testing115

NIST will evaluate performance for scenarios where:116

IREX IV: Concept, Evaluation Plan, and API Specification

2.2 Iris Datasets 6

• one iris sample is available per person.117

• two samples (of opposite eyes) are available per person.118

Due to the high frequency of erroneous (left/right) eye labelings in the OPS-II dataset, NIST will no longer provide
labeling information for iris samples. All samples will simply be labeled "U", indicating "Unknown". NIST suspects
the mislabelings are due to ambiguity with respect to whether "left" is intended to represent the subject’s left eye
(correct) or the eye on the left from the perspective of the camera operator (incorrect).

119

NIST will never provide more than two samples per person. Although eye labels will not be provided, it can be
assumed that if two samples are provided, they represent opposite eyes of the same person.

120

When testing single-eye performance, NIST will enroll left and right eyes of one person under different identifiers121
as though they came from different persons. This will allow NIST to test over larger enrollment databases. The test122
harness will never enroll two samples of the same iris under different identifiers.123

2.1.5 Accuracy-speed Trade-off124

NIST will perform an analysis of the trade-off between speed and accuracy. However, participants are no longer re-125
quested to submit implementations of varying speeds. Rather, participants should submit different implementations126
that are each optimized to a different set of cost function parameters (see Section 2.1.2).127

2.1.6 Timing Statistics128

NIST will report the computation time for all core functions of the implementations (e.g. feature extraction, search-129
ing). As was done in previous IREX evaluations, search time will be plotted as a function of enrollment size with130
a focus on whether the trend is sub-linear for any of the implementations. Batch mode processing, where more131
than one search is conducted at a time, will not be tested. Timing estimates will be made on an unloaded machine132
running a single process at a time. The machine’s specifications are described in Section 2.3.0.1.133

2.1.7 Template Sizes134

The size of the proprietary templates generated by the implementations is relevant because it impacts storage135
requirements and computational efficiency. Therefore, NIST will report statistics on the size of enrollment and136
identification templates.137

2.1.8 Runtime Memory Usage138

NIST will monitor runtime memory usage during one-to-many searches and report the results.139

2.1.9 Automated Quality Assessment140

Automated quality assessment has a number of useful applications in iris recognition (e.g. determining in real-time141
whether a sample should be reacquired during a capture session). Automated quality assessment of iris samples142
was the primary focus of IREX II: IQCE [8]. In IREX IV, NIST will analyze the quality scores returned by the143
implementations during feature extraction. Error vs. reject curves, as described in [9], will be plotted. NIST may144
choose to perform additional analyses with an emphasis on how strongly quality scores correlate with matching145
accuracy. Support for automated quality assessment in the submitted implementations is optional.146

IREX IV: Concept, Evaluation Plan, and API Specification

2.2 Iris Datasets 7

2.2 Iris Datasets147

2.2.1 The OPS-II Dataset148

The primary test dataset for this evaluation is identical to the OPS dataset used in IREX III with one notable
exception: The images in the current dataset were never compressed, while the vast majority of those in the
original OPS dataset had been previously compressed using JPEG at a quality setting of 75.

149

The OPS-II consists of several million operational images collected from 18 distinct commercial iris cameras.
Some subjects’ irides were captured by more than one camera model. Most of the iris images have a pixel res-
olution of 640x480, but some are 480x480. NIST intends to exclude the pathological 330x330 images discussed
in IREX III from this evaluation. Some of the non-pathological images still have poor sample quality (e.g. high
amounts of occlusion, specular reflections, heavy pupillary constriction). Some were captured outside and con-
tain heavily constricted pupils. See the IREX III Supplement I [2] for more information. Search and enrollment
samples will be pulled from the same source and will therefore be of comparable quality.

150

2.2.2 Ground Truth Integrity151

A hazard with collecting operational data is that ground truth identity labels can be incorrectly assigned due to152
clerical error. A Type I error occurs when a person’s iris image is present under two or more identities. To correct153
for this type of error during evaluation, NIST will estimate FPIR using search images that have been horizontally154
flipped1. The effect of flipping is discussed in the IREX III report. Type II errors occur when two or more persons155
are assigned the same subject identifier, which can lead to apparent false negatives. NIST cannot correct for this156
type of error, but analyses in IREX III and its supplement indicate that Type II errors accounted for only a small157
fraction of the false negatives that occurred when the algorithms were tested over the OPS dataset.158

2.3 Test Environment159

2.3.0.1 Hardware Specifications160

The test machines are high-end PC-class blades, each having 4 CPUs with 4 cores per CPU. The blades are161
labeled Dell M905, equipped with 4x Qual Core AMD Opteron 8376HE processors2 running at 2.3GHz. Each162
CPU has 512K of cache. The bus runs at 667 MHz. Main memory consists of 192GB as 24 8GB modules.163
Sixteen processes can run without time slicing. NIST may use some test machines that have slightly different164
hardware specifications, but the operating system and compilation environment will remain homogenous across165
all blades. Furthermore, timing statistics will only be computed on machines having the aforementioned hardware166
specifications.167

2.3.0.2 Operating System168

The test machines will have CentOS 6.2 installed, which runs Linux kernel 2.6.32-220.7.1 (http://www.centos.org/).169

2.4 Reporting of Results170

2.4.1 Final Report171

Following completion of the testing, NIST will publish one or more Interagency Reports (IRs) on the results. NIST172
may also use the results to publish in other academic journals or present at conferences or workshops.173

1Using the jpegtran application provided by the Independent JPEG Group, present on most LINUX platforms.
2cat /proc/cpuinfo returns fpu vme de pse tsc msr pae mce cx8 apic mtrr pge mca cmov pat

npse36 clflush mmx fxsr sse sse2 ht syscall nx pni

IREX IV: Concept, Evaluation Plan, and API Specification

http://www.centos.org/

3 Software Submission 8

2.4.2 Interim Reports174

NIST will provide participants with "score-card" performance results prior to the release of the final report. The175
interim reports will be sent as they become available, so participants who submit earlier are more likely to receive176
their results sooner. While the score cards can be used by the participants for arbitrary purposes, they are intended177
to promote development and to provide the participants with a faster turnaround on how well their implementations178
performed. Score cards will be auto-generated for each implementation and will 1) include timing, accuracy, and179
other performance statistics, 2) include results form other participants without identifying them, 3) be expanded180
and modified as additional analyses are performed, and 4) be released asynchronously with implementation sub-181
missions. NIST does not intend to release the score cards publicly, though it may show them to U.S. government182
test sponsors. While the score cards are not intended for wider distribution, NIST can only request that sponsoring183
agencies not release their content.184

3 Software Submission185

3.1 Participation Requirements186

Participation is open to any commercial organization or academic institution that has the ability to implement a187
large-scale one-to-many iris identification algorithm. There is no charge and participation is open worldwide.188

The following rules apply:189

•
Participants must complete and submit the Participation Agreement
(http://biometrics.nist.gov/cs_links/iris/irexIV/IREX_IV_Application_v1.pdf)

.190

• Participants must submit at least one Class P, and one Class N, implementation.191

•
Participants are permitted to submit up to two Class N and two Class P implementations (so up to four
submissions in total are permitted).

192

• Participants must adhere to the cryptographic protection procedures when submitting their implementations193
(see Section 3.2).194

• All implementations must successfully validate to ensure their proper operation.195

The deadline for submitting implementations will be posted to the IREX IV homepage (http://iris.nist.gov/irex/irexIV).196
NIST will not perform phased testing (i.e. the submission window will close before NIST provides participants with197
preliminary results).198

3.2 Submission Procedure199

All software, data, and configuration files submitted to NIST must be signed and encrypted. Signing is performed to200
ensure authenticity of the submission (i.e. that it actually belongs to the participant). Encryption is performed to en-201
sure privacy. The full process is described at http://biometrics.nist.gov/cs_links/iris/irexIV/IREX_IV_Application_v1.pdf.202

Note: NIST will not accept any submissions that are not signed and encrypted. NIST accepts no responsibility for203
anything that occurs as a result of receiving files that are not encrypted with the NIST public key.204

Implementations shall be submitted to NIST as encrypted gpg files. If the encrypted implementation is below 20MB,205
it can be emailed directly to NIST at irex@nist.gov. If the encrypted implementation is above 20MB, it can either be206
provided to NIST as a download from a webserver3, or mailed as a CD/DVD to the following address:207

IREX IV Test Liason (A214)208
100 Bureau Drive209

3NIST shall not be required to register or enroll in any kind of membership before downloading the implementation.

IREX IV: Concept, Evaluation Plan, and API Specification

http://biometrics.nist.gov/cs_links/iris/irexIV/IREX_IV_Application_v1.pdf
http://iris.nist.gov/irex/irexIV
http://biometrics.nist.gov/cs_links/iris/irexIV/IREX_IV_Application_v1.pdf
mailto:irex@nist.gov

3.3 Requirements for Library Submissions 9

A203/Tech225/Stop 8940210
NIST211
Gaithersburg, MD 20899-8940212
USA213

Upon receipt, NIST will validate the implementation to ensure its correct operation. The validation process involves214
running the implementation over a small sample of test data. This test data will be provided to the participant, who215
must run the implementation in-house and provide NIST with the comparison results. NIST will then verify that the216
participant’s in-house results are consistent with the output produced on the NIST blades. The test data along with217
full instructions will be posted on the IREX IV homepage (http://iris.nist.gov/irexIV) as part of a validation suite.218

3.3 Requirements for Library Submissions219

Participants shall provide NIST will pre-compiled and linkable libraries. Dynamic libraries are permitted, but static220
ones are preferred. Participants shall not provide any source code. Header files should not be necessary, but if221
provided, should not contain intellectual property of the company nor any material that is otherwise proprietary.222

At least one "core" library must be submitted that adheres to the API specification in section 4.2. This library shall223
adhere to the naming convention described in Table 6. Additional dynamic or shared library files may be submitted224
that support this core library.225

Table 6: Naming convention for an implementation library.

Form: libIREX_provider_class_sequence.suffix

Part: libIREX provider classes sequence suffix
Description: First part of

the name,
fixed for all
submissions

a single word name
of the main provider.
EXAMPLE: thebes

Functional class
described in
Table 5 (N or P).

A two-digit decimal
identifier starting at
00 and incrementing
any time a new
submission is sent to
NIST

Either
.so or .a

Example: libIREX_thebes_N_03.a

Implementation libraries must be 64-bit. This will support large memory allocations that are necessary when an226
enrollment database contains millions of entries. To achieve faster running times, NIST expects implementations227
will load the enrollment templates into main memory before the enrollment database is searched. It is safe to228
assume that NIST will not build enrollment databases containing more than 10 million entries (generated from 10229
million iris samples). This means that template sizes should not exceed ~19K on average.230

NIST will ignore requests to alter parameters by hand (e.g. modify specific lines in an XML configuration file). Any231
such adjustments must be submitted as a new implementation.232

3.4 Linking Requirements233

NIST will link the submitted library file(s) to our ISO 98/99 C/C++ language test drivers. Participants are required234
to provide their libraries in a format that is linkable using gcc version 4.1.2. The standard libraries are:235

• /usr/lib64/libstdc++.so.6.0.13 (GLIBCXX 3.4.13)236
• /lib/libc.so.6 -> libc-2.12.so (GLIBC 2.12)237
• /lib/libm.so.6 -> libm-2.12.so238

Participants may provide customized command-line linking parameters. A typical link line might be:239

IREX IV: Concept, Evaluation Plan, and API Specification

http://iris.nist.gov/irexIV

3.5 Single-thread Requirement 10

gcc -I. -Wall -m64 -o irex_main irex_main.c -L. -lirex_thebes_N_01 -lpthread240

Participants are strongly advised to verify library-level compatibility with gcc (on an equivalent platform) prior to241
submitting their software to NIST to avoid linkage problems (e.g. symbol name and calling convention mismatches,242
incorrect binary file formats, etc.). Intel IPP libraries are not permitted and will not be supplied. Intel ICC is not243
available. Access to GPUs is also not permitted.244

On request, NIST will allow the use of g++ for linking, but the library must export its functions according to the C245
linkage specified by in the API. The Standard C++ library is available.246

Dependencies on external dynamic/shared libraries such as compiler-specific development environment libraries247
are discouraged. If absolutely necessary, external libraries must be provided to NIST after receiving prior approval248
from the test liaison. Image processing libraries such as libpng and NetPbm should not be required since NIST will249
handle image reading and decompression.250

IMPORTANT: Windows machines will not be used for testing. Windows-compiled libraries are not permitted. All251
software must run under LINUX.252

3.5 Single-thread Requirement253

Implementations must run in single-threaded mode. Multithreading was supported in IREX III, but all participants
eventually chose to submit single-threaded implementations during the latter stages of phased testing.

254

3.6 Installation Requirements255

3.6.1 Installation Must be Simple256

Installation shall require the simple copying of files followed by a linking operation. There shall be no need for257
interaction with the participant provided everything goes smoothly. It shall not require an installation program.258

3.6.2 No License Requirements or Usage Restrictions259

The implementation shall allow itself to be executed on any number of machines without the need for machine-260
specific license control procedures or activation. The implementation shall neither implement nor enforce any usage261
controls or restrictions based on licenses, number of executions, presence of temporary files, etc. No activation262
dongles or other hardware shall be required. The implementations shall remain operable until at least October 31st,263
2013.264

3.6.3 Sufficient Documentation Must be Provided265

Participants shall provide complete documentation of their implementations and detail any additional functionality266
or behavior beyond those specified here. The documentation must define all (non-zero) vendor-defined error or267
warning return codes.268

3.6.4 Disk-Space Limitations269

The implementation may use configuration files and supporting data files. The total size of all libraries and config-270
uration and data files shall be no more than a gigabyte.271

IREX IV: Concept, Evaluation Plan, and API Specification

3.7 Runtime Behavior Requirements 11

3.7 Runtime Behavior Requirements272

NOTE: If an implementation is buggy or does not comply with these requirements, NIST may not test or report273
results for the implementation in publications.274

3.7.1 No writing to Standard Error or Standard Output275

The implementation will be tested in a non-interactive "batch" mode without terminal support. Thus, the submitted276
library shall run quietly (i.e. it should not write messages to "standard error" or "standard output". An implementation277
may write debugging messages to a log file. This log file must be declared in the documentation.278

3.7.2 Exception Handling Should be Supported279

The implementation should support error/exception handling so that, in the case of an unexpected error, a return280
code is still provided to the calling application. The NIST test harness will gracefully terminate itself if it receives an281
unexpected return code, as it usually indicates improper operation of the implementation.282

3.7.3 No External Communication283

Implementations running on NIST hosts shall not side-effect the runtime environment in any manner except through284
the allocation and release of memory. Implementations shall not write any data to an external resource (e.g. a285
server, connection, or other process). Implementations shall not attempt to read any resource other than those286
explicitely allowed in this document. If detected, NIST reserves the right to cease evaluation of the software, notify287
the participant, and document the activity in published reports.288

3.7.4 Components Must be Stateless289

All implementation components shall be "stateless" except as noted elsewhere in this document. This applies to290
iris detection, feature extraction and matching. Thus, all functions should give identical output, for a given input,291
independent of the runtime history. NIST will institute appropriate tests to detect stateful behavior. If detected, NIST292
reserves the right to cease evaluation of the software, notify the participant, and document the activity in published293
reports.294

3.7.5 No Switches or Command-line Options295

Each implementation must be capable of running stand-alone (i.e. no two submissions shall depend on the same296
copies of libraries or configuration files). Each implementation shall support only one "mode" of operation. NIST297
will not entertain the option to "flip a switch" or modify a configuration file to produce a new implementation. Rather,298
the participant must submit each "mode" as a separate implementation.299

3.7.6 Handling Large Enrollment Templates300

Enrollment templates should not require more than 200K of persistent storage, on average, per enrolled image.301
Participants should inform NIST if their implementations require more than 100K of persistent storage.302

3.7.7 Minimum Speed Requirements303

The implementations shall perform operations within the time constraints specified by Table 7. These time limits304
apply to the function call invocations defined in Section 7. Since NIST cannot regulate the maximum runtime per305
operation, limitations are specified as 90th percentiles (i.e. 90% of all calls to the function shall complete in less306
time than the specified duration). The limitations assume each template was generated from a single iris sample.307

IREX IV: Concept, Evaluation Plan, and API Specification

4 API Specification 12

Table 7: Time limitations for specific operations.

Operaton Timing Restriction

Creation of an enrollment template from a single 640x480 pixel image 1,000 ms

Creation of an identification template from a single 640x480 pixel image 1,000 ms

Finalization of a 1 million template enrollment database 7,200,000 ms

Search duration on a database of one million templates 20,000 ms

3.7.8 Failed Template Generations308

When the implementation fails to produce an enrollment template, it shall still return a blank template (which can309
be zero bytes in length). The template will be included in the manifest like all other enrollment templates, but is not310
expected to contain any feature information.311

4 API Specification312

4.1 Overview313

Library submissions must export and properly implement all of the functions defined in this section. The testing314
process will proceed in two phases: (1) enrollment, followed by (2) identification. The order in which the test315
harness will call the functions is outlined in Table 8.316

The design reflects the following testing objectives:317

• Support distributed enrollment on multiple machines, with multiple processes running in parallel.318

• Support graceful failure recovery and the ability to log the frequency of errors.319

• Respect the black-box nature of proprietary templates.320

• Provide flexibility and freedom to the participant to use arbitrary algorithms.321

• Support the ability to collect timing statistics for specific operations.322

• Support the ability to collect statistics on template sizes.323

Table 8: Program Flow

Stage Function Metrics of Interest

Enrollment
initialize_enrollment_session()
Allows the implementation to perform initialization procedures.
Provides the implementation with:

• advanced notice of the number of individuals and images
that will be enrolled.

• read-only access to the participant-supplied configuration
data directory.

• read-only access to the directory where the enrollment
database will reside.

IREX IV: Concept, Evaluation Plan, and API Specification

4.2 Functions 13

convert_multiiris_to_enrollment_template()
Generates an enrollment template from one or more images of an
individual. The implementation is permitted read-only access to
the enrollment directory at this stage. The implementation must
be able to handle multiple calls to this function from multiple in-
stances of the calling application.

Statistics on template
size and generation
time.

finalize_enrollment()
Constructs an enrollment database from the enrollment tem-
plates. Templates are provided to the function through a manifest
file. The contents of the enrollment directory should be populated
with everything that is necessary to perform searches against
it. This function allows post-enrollment book-keeping, normal-
ization, and other statistical processing of the templates.

Pre-search initialize_feature_extraction_session()
Prepares the implementation for the generation of identification
templates. The implementation is allowed read-only access to
the enrollment directory during this stage.

convert_multiiris_to_identification_template()
Generates an identification template from one or more images of
an individual.

Statistics on template
size and generation
time.

Search initialize_identification_session()
Prepares the implementation for searches against the enrollment
database. The function may read data (e.g. templates) from the
enrollment directory and load them into memory.

identify_template()
Searches a template against the enrollment database and re-
turns a list of candidates.

Statistics on search
time and accuracy.

Compression
(optional)

convert_raster_to_cropped_and_masked()
Converts a raw image to an ISO/IEC 19794-6 Type 7 (cropped
and masked) image.

4.2 Functions324

Functions325

• int32_t get_pid (char ∗sdk_identifier, char ∗email_address)326

Retrieves a self-assigned identifier and contact email address for the software under test.327

• int32_t get_max_template_sizes (uint32_t ∗max_enrollment_template_size, uint32_t ∗max_recognition_-328
template_size)329

Retrieves the maximum (per-image) enrollment and search template sizes.330

• int32_t initialize_enrollment_session (const char ∗configuration_location, const char ∗enrollment_directory,331
const uint32_t num_persons, const uint32_t num_images)332

IREX IV: Concept, Evaluation Plan, and API Specification

4.2 Functions 14

Initialization function, called once prior to one or more calls to convert_multiiris_to_enrollment_template().333

• int32_t convert_multiiris_to_enrollment_template (const MULTIIRIS ∗input_irides, MULTISEGMENTATION334
∗output_properties, uint32_t ∗template_size, uint8_t ∗proprietary_template)335

Generates an enrollment template from a MULTIIRIS object.336

• int32_t finalize_enrollment (const char ∗enrollment_directory, const char ∗edb_name, const char ∗edb_-337
manifest_name)338

Finalization function, used to construct an enrollment database from an EDB and its manifest.339

• int32_t initialize_feature_extraction_session (const char ∗configuration_location, const char ∗enrollment_-340
directory, uint64_t ∗expected_memsize)341

Initialization function, to be called once prior to one or more calls to convert_multiiris_to_identification_template().342

• int32_t convert_multiiris_to_identification_template (const MULTIIRIS ∗input_irides, MULTISEGMENTATIO-343
N ∗output_properties, uint32_t ∗template_size, uint8_t ∗identification_template)344

Generates an identification template from a MULTIIRIS object.345

• int32_t initialize_identification_session (const char ∗configuration_location, const char ∗enrollment_-346
directory)347

Initialization function, to be called once prior to one or more calls to identify_template().348

• int32_t identify_template (const uint8_t ∗identification_template, const uint32_t identification_template_size,349
const uint32_t candidate_list_length, CANDIDATE ∗const ∗candidate_listm uint8_t &decision)350

Searches a template against the enrollment database and returns a list of candidates.351

• int32_t convert_raster_to_cropped_and_masked (const ONEIRIS ∗input_iris, ONEIRIS ∗output_iris)352

Convert a raw (640x480 or 480x480) image to an ISO/IEC 19794-6 Type 7 (cropped and masked) image.353

4.2.1 Function Documentation354

4.2.1.1 int32_t get_pid (char ∗ sdk_identifier, char ∗ email_address)355

Retrieves a self-assigned identifier and contact email address for the software under test.356

Parameters

357

358

out sdk_identifier A hexidecimal integer stored as a null terminated ASCII string. The value can
be whatever the participant chooses, but must be unique for each implementa-
tion. 5 bytes will be pre-allocated for this.

out email_address The point of contact for the software under test, stored as a null terminated
ASCII string. 64 bytes will be pre-allocated for this.

Returns

Zero indicates success. Other values indicate a vendor-defined failure.359

4.2.1.2 int32_t get_max_template_sizes (uint32_t ∗ max_enrollment_template_size,360

uint32_t ∗ max_recognition_template_size)361

Retrieves the maximum (per-image) enrollment and search template sizes.362

These values will be used by the test harness to pre-allocate space for template data. For a MULTIIRIS containing K363
images, the test-harness will pre-allocate K times the provided value before calling convert_multiiris_to_enrollment-364
_template() or convert_multiiris_to_identification_template().365

IREX IV: Concept, Evaluation Plan, and API Specification

4.2 Functions 15

Parameters

366

367

out max_enrollment-
_template_size

The maximum (per-image) size of an enrollment template in bytes.

out max_-
recognition_-

template_size

The maximum (per-image) size of a search template in bytes.

Returns

Zero indicates success. Other values indicate a vendor-defined failure.368

4.2.1.3 int32_t initialize_enrollment_session (const char ∗ configuration_location,369

const char ∗ enrollment_directory, const uint32_t num_persons, const uint32_t370

num_images)371

Initialization function, called once prior to one or more calls to convert_multiiris_to_enrollment_template().372

The implementation shall tolerate execution of multiple calls to this function from different processes running on the373
same machine. Each process may be reading and writing to the enrollment directory.374

Parameters

375

376

in configuration_-
location

Path to a read-only directory containing vendor-supplied configuration param-
eters and/or runtime data files.

in enrollment_-
directory

The directory will be initially empty, but may have been initialized and populated
by separate invocations of the enrollment process. The software may populate
this folder in any manner it sees fit.

in num_persons The number of persons who will be enrolled in the database.
in num_images The number of images, summed over all identities, that will be used to build the

enrollment database.

Returns

377
Return Value Meaning
0 Success
2 The configuration data is missing, unreadable, or in an unexpected format.

4
An operation on the enrollment directory failed (e.g. insufficient permissions, insuffi-
cient disk-space, etc).

6 The software cannot support the number of persons or images requested
Other Vendor-defined failure

378

4.2.1.4 int32_t convert_multiiris_to_enrollment_template (const MULTIIRIS ∗379

input_irides, MULTISEGMENTATION ∗ output_properties, uint32_t ∗380

template_size, uint8_t ∗ proprietary_template)381

Generates an enrollment template from a MULTIIRIS object.382

In addition to handling raw OPS-II images, this function must be able to process ISO/IEC 19794-6 Type 7 (cropped
and masked) images.

383

If the function returns a zero exit status, the calling application will store the template in the EDB, which is later be384
passed to finalize_enrollment(). If the function returns a value of 8, NIST will debug. Otherwise, a non-zero return385

IREX IV: Concept, Evaluation Plan, and API Specification

4.2 Functions 16

value will indicate a failure to enroll. The template will still be added to the EDB and the manifest to ensure that an386
N person enrollment database contains N entries. If the function crashes, NIST will include a zero-length template387
in the EDB and the manifest. The finalization process must be able to process zero-length templates.388

IMPORTANT: The implementation shall not attempt to write to the enrollment directory (nor to other resources)389
during this call. Data collected from the MULTIIRIS object should be stored in the template or created from the390
templates during the finalization step.391

Parameters

392

393

in input_irides The iris samples from which to generate the template.
out output_-

properties
Segmentation and quality information for each iris sample. The NIST test har-
ness will pre-allocate the memory for the ONESEGMENTATION objects (one
per ONEIRIS object). The calling application shall NOT initialize this memory.

out template_size The size, in bytes, of the output template.
out proprietary_-

template
Template generated from the MULTIIRIS object. The template’s format is pro-
prietary and NIST will not access any part of it other than to store it in the EDB.
The memory for the template will be pre-allocated by the NIST test harness.
The implementation shall not allocate this memory.

Returns

394
Return Value Meaning
0 Success.
2 Elective refusal to process the MULTIIRIS.
4 Involuntary failure to extract features.
6 Elective refusal to produce a template.
8 Cannot parse the input data.
Other Vendor-defined failure.

395

4.2.1.5 int32_t finalize_enrollment (const char ∗ enrollment_directory, const char ∗396

edb_name, const char ∗ edb_manifest_name)397

Finalization function, used to construct an enrollment database from an EDB and its manifest.398

Finalization shall be performed after all enrollment processes are complete. It should populate the contents of399
the enrollment directory with everything that is necessary to perform searches against it. This function allows400
post-enrollment book-keeping, normalization, and other statistical processing of the generated templates. It should401
tolerate being called multiple times, altough subsequent calls should probably not do anything.402

The format of the two input files is described in the table below. The enrollment database (EDB) file stores a403
concatenation of the templates generated by calls to convert_multiiris_to_enrollment_template() in binary format.404
It does not contain a header or any delimiters between templates. This file can potentially be several gigabytes405
in size. The EDB manifest is an ASCII file that stores information about each template in the EDB file. Each line406
contains three space-delimited fields specifying the id, length, and offset of the template in the EDB file. If the EDB407
file contains N templates, the manifest will contain N lines.408

For all intents and purposes, the template id can be regarded as a person id.409

IREX IV: Concept, Evaluation Plan, and API Specification

4.2 Functions 17

Field Description Datatype Size
Template ID Non-negative decimal integer, not necessarily zero-indexed or in any

particular order.
4 bytes

Template Length Non-negative decimal integer. 4 bytes
Offset of template
in EDB file

Non-negative decimal integer. 8 bytes

Example:
901231 1024 0
5834891 0 1024
50403 1024 1024
...

410

Parameters

411

412

in enrollment_-
directory

The top-level directory in which the enrollment database will reside. The imple-
mentation will have read and write access to this directory.

in edb_name The path to a single read-only file containing the concatenated templates. -
The implementation should extract content from this file and place it in the
enrollment directory.

in edb_manifest_-
name

The path to a single read-only file containing the EDB manifest.

Returns

413
Value Meaning
0 Success.
2 Cannot locate the input data - the input files or names seem incorrect.
4 An operation on the enrollment directory failed.
6 One or more template files are in an incorrect format.
Other Vendor-defined failure.

414

4.2.1.6 int32_t initialize_feature_extraction_session (const char ∗415

configuration_location, const char ∗ enrollment_directory, uint64_t ∗416

expected_memsize)417

Initialization function, to be called once prior to one or more calls to convert_multiiris_to_identification_template().418

The implementation shall tolerate execution of multiple calls to this function from different processes running on the419
same machine.420

Parameters

421

422

in configuration_-
location

Path to a read-only directory containing vendor-supplied configuration param-
eters and/or runtime data files.

in enrollment_-
directory

The top-level directory in which the enrollment data was placed when finalize-
_enrollment() was called.

in expected_-
memsize

Given the enrollment data, the implementation shall specify the expected or
peak memory size (in bytes) that will be used during searching.

IREX IV: Concept, Evaluation Plan, and API Specification

4.2 Functions 18

Returns

423
Return Value Meaning
0 Success.
2 The configuration data is missing, unreadable, or in an unexpected format.
4 An operation on the enrollment directory failed.
Other Vendor-defined failure.

424

4.2.1.7 int32_t convert_multiiris_to_identification_template (const MULTIIRIS ∗425

input_irides, MULTISEGMENTATION ∗ output_properties, uint32_t ∗426

template_size, uint8_t ∗ identification_template)427

Generates an identification template from a MULTIIRIS object.428

In addition to handling raw OPS-II images, this function must be able to process ISO/IEC 19794-6 Type 7 (cropped
and masked) images.

429

If the function returns a zero exit status, the template will be used for matching. If the function returns a value of 8,430
NIST will debug. Otherwise, a non-zero return value will indicate a failure to acquire and the template will not be431
used in subsequent search operations.432

Parameters

433

434

in input_irides The iris samples from which to generate the template.
out output_-

properties
Segmentation and quality information for each iris sample. The NIST test har-
ness will pre-allocate the memory for the ONESEGMENTATION objects (one
per ONEIRIS object). The implementation shall NOT initialize this memory.

out output_-
properties

Segmentation and quality information for each iris sample. The NIST test har-
ness will pre-allocate the memory for the ONESEGMENTATION objects.

out template_size The size, in bytes, of the output template
out identification_-

template
Template generated from the MULTIIRIS object. The template’s format is pro-
prietary and NIST will not access any part of it other to pass it to identify_-
template() and possibly store it temporarily. The memory for the template will
be pre-allocated by the NIST test harness. The implementation shall not allo-
cate this memory.

Returns

435
Return Value Meaning
0 Success.
2 Elective refusal to process the MULTIIRIS.
4 Involuntary failure to extract features.
6 Elective refusal to produce a template.
8 Cannot parse the input data.
Other Vendor-defined failure.

436

If the MULTIIRIS contains multiple images, then a zero status should be returned as long as feature information437
could be extracted from at least one of the images.438

4.2.1.8 int32_t initialize_identification_session (const char ∗ configuration_location,439

const char ∗ enrollment_directory)440

Initialization function, to be called once prior to one or more calls to identify_template().441

IREX IV: Concept, Evaluation Plan, and API Specification

4.2 Functions 19

The function may read data (e.g. templates) from the enrollment directory and load them into memory.442

Parameters

443

444

in configuration_-
location

Path to a read-only directory containing vendor-supplied configuration param-
eters and/or runtime data files.

in enrollment_-
directory

The top-level directory in which the enrollment data was placed when finalize-
_enrollment() was called.

Returns

445
Return Value Meaning
0 Success.
Other Vendor-defined failure.

446

4.2.1.9 int32_t identify_template (const uint8_t ∗ identification_template, const447

uint32_t identification_template_size, const uint32_t candidate_list_length,448

CANDIDATE ∗const ∗candidate_listm uint8_t & decision)449

Searches a template against the enrollment database and returns a list of candidates.450

NIST will typically set the candidate list length to operationally feasible values (e.g. 20), but may decide to extend it451
to values that approach the size of the enrollment database.452

Parameters

453

454

in identification_-
template

A template generated by a call to convert_multiiris_to_identification_template().

in identification_-
template_size

The size, in bytes, of the template.

in candidate_list_-
length

The length of the candidate list array.

out candidate_list An array (of length candidate_list_length) of pointers to candidates. Each can-
didate shall be populated by the implementation and shall be sorted in ascend-
ing order of distance score (e.g. the most similar entry shall appear first). The
candidate list must be populated with sensible values. The memory for the
candidates will be pre-allocated by the NIST test harness.

out decision

A boolean decision on whether the implementation believes the top ranked
candidate matches the identification template (1=yes, 0=no). This decision
should attempt to minimize the cost function for the given class type (see
Section 2.1.2).

Returns

455
Return Value Meaning
0 Success.
2 The input template is defective.
Other Vendor-defined failure.

456

IREX IV: Concept, Evaluation Plan, and API Specification

5 Supporting Data Structures 20

4.2.1.10 int32_t convert_raster_to_cropped_and_masked (const ONEIRIS ∗ input_iris,457

ONEIRIS ∗ output_iris)458

Convert a raw (640x480 or 480x480) image to an ISO/IEC 19794-6 Type 7 (cropped and masked) image.459

This function shall perform the same operations that were required to generate a KIND 7 record in IREX I. This
involves cropping the image and masking the sclera and eyelids with a solid color. As described in ISO/IEC
19794-6, cropping shall provide a margin 0.6R wide on both the left and right sides of the iris. The margin above
and below the iris shall be 0.2R. The upper and lower eyelids shall be masked with a color of 128 while the sclera
shall be masked with a color of 200. The boundary between the sclera and eyelids shall be smoothed. See
ISO/IEC 19794-6 for further description.

460

Implementation of this function is optional. Implementations that do not support cropping and masking shall
return a value of 2. Otherwise, a zero exit status indicates success and the image will be used for matching. If the
function returns a value of 8, NIST will debug. Other return values shall indicate an error and the output image
will not be used for matching.

461

Parameters

462

463

in input_iris The input iris.
out output_iris The result of the masking and cropping operations. Memory for the raster

data will already have been allocated prior to the function call. The amount of
memory allocated will be equal to that of the input iris.

Returns

464
Return Value Meaning
0 Success.
2 The implementation does not support this function.
4 Involuntary failure to localize boundaries or perform masking.
6 Elective refusal to produce the output on quality grounds.
8 Cannot parse the input data.
Other Vendor-defined failure.

465

5 Supporting Data Structures466

This section describes the data structures used by the API.467

5.1 CANDIDATE Struct Reference468

Defines a structure that holds a single candidate.469

Public Attributes470

• uint8_t failed471

Indicates whether the candidate is valid (0=valid, 1-255=invalid).472

• uint32_t template_id473

Template identifier from the enrollment database.474

• double distance_score475

IREX IV: Concept, Evaluation Plan, and API Specification

5.2 MULTIIRIS Struct Reference 21

Measure of distance between the searched template and the candidate.476
• double probability477

Estimate of the probability that the biometric data and candidate belong to different persons.478

5.1.1 Detailed Description479

Defines a structure that holds a single candidate.480

5.1.2 Member Data Documentation481

5.1.2.1 uint8_t failed482

Indicates whether the candidate is valid (0=valid, 1-255=invalid).483

5.1.2.2 uint32_t template_id484

Template identifier from the enrollment database.485

5.1.2.3 double distance_score486

Measure of distance between the searched template and the candidate.487

Lower scores indicate greater similarity. The distance score must be non-negative, unless the search template is488
somehow broken, in which case it shall be set to -1.489

5.1.2.4 double probability490

Estimate of the probability that the biometric data and candidate belong to different persons.491

Stated differently, it shall be the probability that a comparison between two randomly chosen people would produce492
a distance score less than or equal to the distance score reported above. If the search template is somehow493
broken, this value shall be set to -1.494

5.2 MULTIIRIS Struct Reference495

Defines a structure that holds an array of irides for a single person.496

Public Attributes497

• uint32_t num498

Number of irides.499
• ONEIRIS ∗∗ irides500

Zero-indexed array of pointers to the irides.501

5.2.1 Detailed Description502

Defines a structure that holds an array of irides for a single person.503

5.2.2 Member Data Documentation504

5.2.2.1 uint32_t num505

Number of irides.506

IREX IV: Concept, Evaluation Plan, and API Specification

5.3 MULTISEGMENTATION Struct Reference 22

5.2.2.2 ONEIRIS∗∗ irides507

Zero-indexed array of pointers to the irides.508

5.3 MULTISEGMENTATION Struct Reference509

Defines a structure that holds an array of ONESEGMENTATION objects.510

Public Attributes511

• uint32_t num512

Number of ONESEGMENTATION objects.513

• ONESEGMENTATION ∗∗ segs514

Zero-indexed array of pointers to ONESEGMENTATION objects.515

5.3.1 Detailed Description516

Defines a structure that holds an array of ONESEGMENTATION objects.517

5.3.2 Member Data Documentation518

5.3.2.1 uint32_t num519

Number of ONESEGMENTATION objects.520

5.3.2.2 ONESEGMENTATION∗∗ segs521

Zero-indexed array of pointers to ONESEGMENTATION objects.522

5.4 ONEIRIS Struct Reference523

Defines a structure that holds a single iris with corresponding attributes.524

Public Attributes525

• uint8_t eye526

Eye label (subject’s left or right eye).527

• uint16_t image_width528

Image width in pixels.529

• uint16_t image_height530

Image height in pixels.531

• uint8_t image_type532

Image type integer code.533

• uint16_t camera534

The camera sensor ID.535

• uint8_t ∗ data536

Pointer to image raster data, 8 bits-per-pixel.537

IREX IV: Concept, Evaluation Plan, and API Specification

5.5 ONESEGMENTATION Struct Reference 23

5.4.1 Detailed Description538

Defines a structure that holds a single iris with corresponding attributes.539

5.4.2 Member Data Documentation540

5.4.2.1 uint8_t eye541

Eye label (subject’s left or right eye).542

The eye label information for the OPS-II dataset has proven unreliable and will not be used for testing. This field
will always be set to 0, indicating that it is unspecified or unknown.

543
544

5.4.2.2 uint16_t image_width545

Image width in pixels.546

5.4.2.3 uint16_t image_height547

Image height in pixels.548

5.4.2.4 uint8_t image_type549

Image type integer code.550

This field has different meaning in IREX IV than it did IREX III. A value of 0 indicates that the image will be
either 640x640 or 480x480 with no geometric constraints on the locations of the pupil or iris boundaries. A
value of 7 indicates an ISO/IEC 19794-6 Type 7 (cropped and masked) image, the result of a call to con-
vert_raster_to_cropped_and_masked().

551

5.4.2.5 uint16_t camera552

The camera sensor ID.553

This field will always be set to 0x0000, meaning that it is either unknown or unspecified.554

5.4.2.6 uint8_t∗ data555

Pointer to image raster data, 8 bits-per-pixel.556

5.5 ONESEGMENTATION Struct Reference557

Defines a structure that holds segmentation and quality information for an iris sample.558

Public Attributes559

• double iris_radius560

Iris radius in pixels.561

• uint16_t iris_center_x562

x coordinate of iris center.563

• uint16_t iris_center_y564

y coordinate of iris center.565

• double pupil_radius566

IREX IV: Concept, Evaluation Plan, and API Specification

5.5 ONESEGMENTATION Struct Reference 24

Pupil radius in pixels.567

• uint16_t pupil_center_x568

x coordinate of pupil center.569

• uint16_t pupil_center_y570

y coordinate of iris center.571

• uint8_t quality572

Assessment of iris sample quality.573

• uint8_t failed574

Indicates whether segmentation of the iris failed (0=success, 1=failed).575

5.5.1 Detailed Description576

Defines a structure that holds segmentation and quality information for an iris sample.577

5.5.2 Member Data Documentation578

5.5.2.1 double iris_radius579

Iris radius in pixels.580

5.5.2.2 uint16_t iris_center_x581

x coordinate of iris center.582

5.5.2.3 uint16_t iris_center_y583

y coordinate of iris center.584

5.5.2.4 double pupil_radius585

Pupil radius in pixels.586

5.5.2.5 uint16_t pupil_center_x587

x coordinate of pupil center.588

5.5.2.6 uint16_t pupil_center_y589

y coordinate of iris center.590

5.5.2.7 uint8_t quality591

Assessment of iris sample quality.592

Quality is a prediction of how well the sample will perform when matched. 254 indicates quality assessment is593
unsupported. 255 indicates a failed attempt to assign quality. Otherwise, quality values shall range from 0 to 100,594
with higher values indicating better quality.595

5.5.2.8 uint8_t failed596

Indicates whether segmentation of the iris failed (0=success, 1=failed).597

IREX IV: Concept, Evaluation Plan, and API Specification

6 References 25

6 References598

[1] P. Grother, G.W. Quinn, J.R. Matey, M. Ngan, W. Salamon, G. Fiumara, and C. Watson. IREX: Performance of599
Iris Identification Algorithms. Technical report, NIST, 2011. 1, 3600

[2] G. Quinn and P. Grother. IREX III supplement I: Failure analysis. Technical report, NIST, 2011. 3, 7601

[3] P. Grother, G.W. Quinn, and Jonathan Phillips. Report on the Evaluation of 2D Still-image Face Recognition602
Algorithms. Technical report, NIST, 2010. 3603

[4] A. Martin, G. Doddington, T. Kamm, M. Ordowski, and M. Przybocki. The DET curve in assessment of detection604
task performance. In Proc. Eurospeech, pages 1895–1898, 1997. 3605

[5] R. Bolle, J. Connell, S. Pankanti, N. Ratha, and A. Senior. Guide to Biometrics. Springer, 2004. 3606

[6] H. Drolon, F. Devaux, A. Descampe, Y. Verschueren, D. Janssens, and B. Macq. OpenJPEG. http://www.607
openjpeg.org/. 5608

[7] David Taubman. Kakadu software. www.kakadusoftware.com. 5609

[8] E. Tabassi, P. Grother, and W. Salamon. IREX - IQCE performance of iris image quality assessment algorithms.610
Technical report, NIST, 2011. 6611

[9] Patrick Grother and Elham Tabassi. Performance of biometric quality measures. IEEE Trans. Pattern Anal.612
Mach. Intell, pages 531–543, 2007. 6613

IREX IV: Concept, Evaluation Plan, and API Specification

http://www.openjpeg.org/
http://www.openjpeg.org/
http://www.openjpeg.org/
www.kakadusoftware.com

	IREX IV Concepts
	Overview
	Market Drivers
	Application Scenarios

	Evaluation Overview
	Performance Metrics
	Iris Datasets
	Test Environment
	Reporting of Results

	Software Submission
	Participation Requirements
	Submission Procedure
	Requirements for Library Submissions
	Linking Requirements
	push0 g 0 GpopSingle-thread Requirementhighlightpush0 g 0 Gpoptowidthheightdepth
	Installation Requirements
	Runtime Behavior Requirements

	API Specification
	Overview
	Functions

	Supporting Data Structures
	CANDIDATE Struct Reference
	MULTIIRIS Struct Reference
	MULTISEGMENTATION Struct Reference
	ONEIRIS Struct Reference
	ONESEGMENTATION Struct Reference

	References

